tives, is ahwas located a little below the value of experimental pH (i.e., between $\mathrm{p} K_{1}=6.5$ and 7.7) depending on the experimental conditions and test organisms. In spite of the exception of the X^{3}-benzorl derivatives, omr over-all results indicate that the pK a value shombl be as close to body pH as possible in wrder to whtain a maximal chemotherapentic activity.
Although the ρ valne for the N-heteroevelic derivatives, 0.60 T . is very similar to that obtained for the sultamibuilider aganst E. coll. 0.7 (ρ value in en $1 \overline{0} \mathrm{c}$ divided by $\rho_{\mathrm{A}}=1.8$), the ρ value for the N^{1}-benzoy sulfanilamides aganst the same $I s$. coli, 2.(6), is considerably larger than the other two. As described above, the ρ value for the latter is mot highly reliable so that the difference in ρ may wh be worth tring to matimatize. However, in om procedure, the $\Delta \mathrm{p} K_{1}$ or σ term camot be assigned only to the empribntion of an electronic demand of the drag molecole at the site of action. If the transfer process from outside the cell to the intracelthar site of action throngh many partitionings and adsorption and desorption proceser ria bindogical membranes is governed to some extent by an electromic effect of the substitnent, this effect is contained in the ρ value together with the effect at the site of aetion. Since we are unable to separate the role of the $\Delta \mathrm{p} K$. term, the difference in ρ values for different series womld not necessarily indicate the difference in the essential electronic demand of the drugs at the site of action.

The above aralyses provide an ther illustration of the great practical advantage of the me of the extrathermo-
dyamic approach ${ }^{2}$ (1) stracture activity problems. The role of the hydrophobic property of the molecule in the bacterintatic activity and the protein binding is nicely delimpated be means of π. The amblysis, where the effects of sobstitnent on imization are separated from other electronic effects of substitucnts, is :ble to Aleseribe the HK , dependence of the bacteriostatio aetivity. It also shons, in :a procedure independent from the of of eartier workers, ${ }^{3}$, that the maximat ant bacterial activity is exerted by drags having an optimal $p K_{\mathrm{s}}$ vabue. 'lhis procedure shomld help in designing new sulfonamide drugs with optimal $\mathrm{p} K_{1}$ and π_{0}. It whouk alko aid in moderstanding the phammeokinetic mechanism maderty ing sulfonamide chemotherapy when a comprehensive set of biohgieal data and physicochomical comstante for in ero properties are available, whe an approprate noded can be chosen for in cino phenomena such :t cmative effect, metabolic proces, and ramal excretion. Thms, if this procedure cond be combine with the recently developed method by Kruger-Hhiemer sund Bünger. ${ }^{33}$ a relationship between dosage schechle and nuleconar stancture of the sulfonamides cond be integrated on that an ideal theage sehembe for a now drug cond be predictel from structural parameters wich :as ho P 'and $\Delta p K_{1}$

Acknowledgment. The anthors wish to express thein sincere thanks to Profesoms Cetsio Mitsni and Minm Nakajuna for their suppert of this work.

Relationships among Current Quantitative Structure-Activity Models ${ }^{\text { }}$

Department of Medicinal Chemistry, Unizersity of Tennessef College of Phomucy, Memphix, Tennessef 38103
Receined l/me es, limi

Abstract

 which the observed biological activity is expressed as a function of gromp contributions io the achivity and the wher inchades the Hansch substitnent constant model. It is demonsirated that, if the biological activity is a purabolic function of Hansch's substituent constant, π, the model assuming additive mud constant contribution from each group is not appropriate, but a model previonsly successful in a specific instance io analogons to the Hansch equation. If the π^{2} term is not significant, however, the model assuming additive and constant contribution is appropliate when the biological activity is dependent on π and $/ 0 \cdot \sigma$.

The recent snceess of attempts to express quantitatively the relationship of chemical structure to biological activity is most encouraging to the medicinal chemist who wishes to approach drug design rationally. The quantitative models for structure-activity relationships of related series of moleenles fall into two broad categories. (A) There are mathematical models in which the observed biological activity is expressed as a function of parameters assigned to each substituent group and/or the parent portion of the molecule; the values of these parameters are obtained, after a particular model has been selected, by fitting the experinentally observed activities of a series of molecules nsing the method of multiple regressioms. (B) The

[^0]second category is comprised of linear free-energy relationships which ascribe the biological activity of a molecule to contributions from various frecenergyrelated physicochemical parameters of the substitnents. the constants associated with each physieochemical parameter being generated by regression amalys for the biologically tested molecules.

Examples of the first approach include those of Free and Wilson ${ }^{2}$ and Kopecký and co-workers. ${ }^{3,4}$ The method of Free and Wilson ${ }^{2}$ is based upon an additive mathematical model in which a particular substituent in a specific position is assumed to make an additive and constant contribution to the biological activity of a molecule in a series of chemically related

[^1]molecules. It was recognized that not all biological activities could be described by this additive model, and failure of the method was suggested to be diagnostic of such instances. The method of Kopecký and coworkers tested four equations for the quantitative expression of the difference in $\log L_{50}$ of para- 3 and meta-disubstituted ${ }^{4}$ benzenes from $\log \mathrm{LD}_{50}$ of benzene. The biological activity ($B A$) associated with the substituents in positions X and Y was expressed by the following equations where the x and y subscripts refer
\[

$$
\begin{gather*}
B .1=a_{\mathrm{x}}+a_{\mathrm{y}} \tag{1}\\
B . \dagger=l_{\mathrm{x}} d_{\mathrm{y}} \tag{2}\\
B . A=b_{\mathrm{x}}+b_{\mathrm{y}}+e_{\mathrm{x}} e_{\mathrm{y}} \tag{3}\\
B . A=b_{\mathrm{x}}+b_{\mathrm{y}}-e_{\mathrm{x}} e_{\mathrm{y}} \tag{4}
\end{gather*}
$$
\]

to the contribution of a particular substituent in, respectively, the X or Y position. Neither the additive model, eq 1 , similar to the Free and Wilson approach, the product model, eq 2 , nor the combined model described by eq 4 was found appropriate for description of the activity. The combined model described by eq 3 , however, gave a statistically significant correlation of the data for both para ${ }^{3}$ and meta ${ }^{4}$ compounds. It was thought ${ }^{3.4}$ that there could possibly be a relationship between the successful mathematical model (eq 3) and the linear free-energy relationships of the type described in (B). An attractive feature of models in category A is that no physicochemical parameters need be determined for the substituents; a successful correlation of biological activity with the numerical parameters associated with various substituents can rank the structural changes per position, by estimating the amount of biological activity attributed to each change and offer a guide for the future synthesis and testing of other compounds in the series.

An outstanding example of the second approach may be found in the extensive work of Hansch and coworkers. ${ }^{5}$ The $\rho-\sigma-\pi$ analysis for correlation of biological activity and chemical structure has been successfully applied to problems as varied as enzymatic reaction mechanisms, ${ }^{6}$ correlation of localization rates of benzeneboronic acids in brain and tumor tissue, ${ }^{7}$ and structure-activity relationships of penicillin derivatives. ${ }^{8}$ Equation 5^{5} is the basic expression used in such correlations. $\quad C_{\mathrm{x}}$ is the molar concentration of a deriva-

$$
\begin{equation*}
\log 1 / C_{\mathbf{x}}=-a \pi^{2}+b \pi+\rho \sigma+c \tag{5}
\end{equation*}
$$

tive in a family of related compounds causing an equivalent biological response; π is the free-energy-related substituent constant defined as the logarithm of the partition coefficient of the derivative minus the logarithm of the partition coefficient of the parent compound and is related to hydrophobic bonding of the substituent; σ is the well-known Hammett constant, a free-energy-related electronic-substituent constant. The constants a, b, ρ, and c are generated by regression analysis of the equations for the biologically tested derivatives in a series. For molecules with more than one position of substitution, π and σ values are

[^2]usually added for the substituents. The basic equation may simplify in some instances ${ }^{5}$ to eq $6,7,8$, or 9 .
\[

$$
\begin{gather*}
\log 1 / C_{\mathbf{x}}=a \pi+b \tag{6}\\
\log 1 / C_{\mathrm{x}}=-a \pi^{2}+b \pi+c \tag{7}\\
\log 1 / C_{\mathrm{x}}=\rho \sigma+c \tag{8}\\
\log 1 / C_{\mathrm{x}}=a \pi+\rho \sigma+c \tag{9}
\end{gather*}
$$
\]

Of these four equations, eq 7 , which describes a parabolic dependence of biological activity on π, frequently gives the statistically evaluated best fit, ${ }^{9}$ especially in complex systems such as whole animals or cells. ${ }^{10}$

Hansch's $\rho-\sigma-\pi$ analysis may serve both to guide the medicinal chemist in future synthesis and testing of other compounds in the series and to untangle the roles of hydrophobic, electronic, and steric factors in drug-receptor interactions. The method does require experimental π and σ values, and, while the approximately additive nature of these values allows prediction of π and σ values for a great many substituents without resort to direct experimental determination, there are limits to this prediction. A series of molecules of biological interest might have complex substituents for which π and σ values are not available. It is conceivable that if the π and σ values required experimental determination to allow application of the $\rho-\sigma-\pi$ analysis, the mathematical models described in (A) would be more attractive for use as a guide to further work.

It therefore becomes of interest to compare the two approaches (A and B) and to investigate the implications of the comparisons for subsequent applications of the models.

The basic assumption of the Free and Wilson ${ }^{2}$ approach is that the $B A$ contributed by each substituent is additive and constant regardless of substituent variation in the rest of the molecule. In view of the frequency of occurrence of a parabolic relation of π to biological activity (eq 7) found by Hansch and coworkers, 9,10 it becomes of interest to investigate the applicability of the Free and Wilson ${ }^{2}$ assumptions in such a situation. The question is, "if the observed $B A$ of the molecules in a series is indeed a parabolic function of π and if the additivity of π values is a valid approximation, does the Free and Wilson ${ }^{2}$ assumption of additive and constant contribution for each substituent also apply?"

Consider a molecule with two positions, X and Y , having groups x and y substituted, with π values of π_{x} and π_{y}, respectively. Further, assume that eq 7 is applicable, i.e., the biological activity is indeed a parabolic function of π. Following Hansch's assumption of additive π values, the $B A$ of the molecule becomes (from eq 7)

$$
\begin{equation*}
B A=-a\left(\pi_{\mathrm{x}}+\pi_{\mathrm{y}}\right)^{2}+b\left(\pi_{\mathrm{x}}+\pi_{\mathrm{y}}\right)+c \tag{10}
\end{equation*}
$$

or
$B A=\left(-a \pi_{x}^{2}+b \pi_{x}\right)+\left(-a \pi_{y}^{2}+b \pi_{y}\right)-2 a \pi_{x} \pi_{y}+c$
It is immediately apparent on inspection of eq 11 that when biological activity depends parabolically on π, the activity contribution of one substituent is not independent of the π value of the other substituent.

[^3]The $B A$ is composed of fom additive eomponents: a constant term, r associated with the parent portion of the moleonk: : 1 erm dependent on the sulstituent at X only $-a \pi_{5}{ }^{2}+h \pi_{x}$: mothertemedependent m the
 tem which shows the mutual dependenee npen substitutional variation at X :and $\mathrm{S},-2 a \pi_{s} \pi_{5}$. The Frece and Wibson ${ }^{2}$ assmmption of additive and constant activity contribution associated with each substitnont is therefore not appropriate for the biological activity of a series of molecules which depende parabolically on π.

It is interesting to point ont the anhogr between the terms in eq 11 and those in the independently reported expression which Kopecky el al.. ${ }^{3.4}$ fomblo be successful, eq 3 ; compare ${ }^{11}-a \pi_{x}{ }^{2}+b \pi_{x}$ with $b_{x},-a \pi_{s}{ }^{2}$ $+b \pi_{y}$ with b_{y} and $-2 a \pi_{x} \pi_{y}$ with $c_{x} e_{y}$. Thin inggests that eq 3 has some physieal significmere and is related to the linear free-energy models.

Gquation 3 may be extended readily to deseribe a series of molecules with three or more substitnent positions, the biological activity of which depends parabolically on π.
(iememally: Hanseh's eq 7 mas be written

$$
\begin{equation*}
B . t=-a\left(\Sigma \pi_{24}\right)^{2}+h \Sigma \pi_{4}+ \tag{112}
\end{equation*}
$$

for 11 substitntional positions. which can be expanded

$$
\begin{array}{r}
\text { B.t }=-a 1 \pi_{1}+\pi_{2}+\pi_{2}+\ldots+2 \pi_{1} \pi_{2}+2 \pi_{2} \pi_{3}+ \\
2 \pi_{1} \pi_{3}+\ldots 1+\pi_{1}+\pi_{2}+\pi_{2}+\ldots 1+6 \tag{133}
\end{array}
$$

and rewritten
$\left.\left.B t=1-a_{\pi}\right)^{2}+b \pi_{1}\right)+\left(-a \pi_{2}^{2}+b \pi_{2}\right)+\left(-u \pi_{3}{ }^{2}+b \pi_{3}\right)+$
$+2 \pi_{1} \pi_{2}+2 \pi_{n} \pi_{3}+2 \pi_{1} \pi_{3}+\ldots+r(1+)$
Onc ean see from eq 14 that, generally, the biohogieal activity of a molecnle is a fmetion of n independent terms, a constant c and n montally dependent cross products. In Kopecky's notation, ed lt comld be written

$$
B .1=b_{4}+b_{2}+b_{3}+\ldots+a_{2}+a_{2}+r_{1} a_{2}+\ldots(1 .)
$$

Gorresponding mathematical models may be similarly derived for molecules with biological activity dependent upon π and σ acending to eq5, 0,8 , and 9 as described by Hansch, et al."

In particular, when the most general of these equations (eq; i) applies. it will be seen that the biological activity of a molecule with substitnent positions X and I may be described in terms of fom components: C, $-\underline{2} a \pi_{x} \pi_{s}-a \pi_{s}^{2}+b \pi_{s}+\rho \sigma_{s}$, and $-a \pi_{y}^{2}+b \pi_{y}+$ $\rho \sigma_{y}$. The first two components are identical with their combterparts derived from eq 7 . while the last two terms. $\rho \sigma_{y,}$ being determined independently by substitution at X :and Y^{2}, respectively are smilar to the terms $-a \pi_{x}{ }^{2}$ $+b \pi_{x}$ and $-a \pi_{y}{ }^{2}+b \pi_{y}$ derived from ed 7 in that they are defendent only on the substituent at X or Y, respectively, ahthongh they are different in that they cach contain a $\rho \sigma$ term.

Equation 1 is, then. should also be an appropriate mathematical model for describing the biological activity of a series of molecules which satisfies eq 5 , as well as for activities satisfying eq 7 .

[^4]One camot, of comse, distinguish morely from the success of ed 15 in correlating biological activition whethere ef ow \mathbf{t} best deseribes the hologieal activity
 the activity at all. h view of the mecess of eq o and 7 in correlating biological activity; however, applieation of eq 1.5 when the π and σ vaher necessary for a $\rho \sigma \pi$ analysis are mot readily at hand womb seem to be fustified.

Lquations 6 . s and ! rexpectively, yold for a molecale anhetituted at X and l the following expresions of activity: $a \pi_{x}+a \pi_{y}+b, \rho \sigma_{x}+\rho \sigma_{y}+c_{\text {a }}$ and $a \pi_{\mathrm{a}}$ $+a \pi_{y}+\rho \sigma_{x}+\rho \sigma_{y}+c$. It is scen that none of the individual tems in these expressions depend on mone than one substituent. The original assmmption of comstant, additive contribntion of each substitnent made in the Free and Wikon ${ }^{2}$ method and impheitly in the additive model (eq 1) of the Kopecky ${ }^{3,4}$ apporoach sems apmopriate therefore, for biologieal activities which satisfy eq (f , s. or !)

A slight nomlinear dependence of $B A$ on the electron density (correspmoling to the σ term) of the nitrogen atom of anmes in their enzomatio demethybation was shown to be signitieant. ${ }^{1 / 2}$ Althongh examples of correlations between $B A$:and a $\sigma^{\frac{4}{t}}$ termare rare, one should recognize that an expression analogons to ed 11 may be developed by rimply inchohg appropriate σ :mol σ^{2} temns. 'lhe correxponding Kopecky:, equation womht then be

$$
B . t=b_{1}+b_{x}+c_{x} e_{3}+f_{x} f_{y}
$$

Where $\int_{x} f_{y}$ representran additional crose prodnct.
In applying these multiple-regression :malyses, ont shomld bew in mind that, when the BA is a parabotie fumetion of π. one should not expect the firee :ond Wilson² method to hold, but liopecky's. ${ }^{4}$ model shombl apply; the rare instance of the dependence of the $B . A$ on σ^{2}, as well as on π^{-2}. π, and/or σ, mar be acconodated by eq 16. On the other hand, when the π^{2} term is not significant, but one of the other $\rho-\sigma \pi \pi$ equations expresses the biological activity, the l'ree and Wilson ${ }^{2}$ model seems to be a reasonable one. All of these models require some degrees of freedom (i.e., more equationthan monowns) and they shonk be statistically evaluated ${ }^{13}$ to determine the significance of the correlation.

In view of the relationship between the mathematical models of biological activity and those based on linear free-energy relationships, the biolngical-response parameter chosen for comelation with the nathematical models might best be selected by the criteria applied to those selected for the linear free-energy relationships. These parmoters as selected by Hansch and eor workers are usnally negative logarithms of a nolar concentration necessary to achieve a constant equivalent response.

Acknowledgment.- The authors wish to thank F . Sundaram for reading and eommenting nom the mannseript.

[^5]
[^0]: (1) This rescareh is heing sobported by the U. S. Army Medical Researeh und Develomment Command (D.A-49-193-M1)-2779) and the National sconce Fommation ($(\mathrm{iB}-4453$). This paner is Contribution No. 220 from (he Amy Researel Prugram on Malaria.

[^1]: (2) S. M. Free, st., and J. WV. Wilson, J. Meal. Chem. 7, 395 (1964).
 (3) K. Bocek, J. Kopetky M. Krimeová and D. Vhachevá, lixperiota" 20. (f) 17 (1964).

[^2]: (5) C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964).
 (6) C. Hansch, E. W. Deutsch, and R. N. Smith, ibid., 87, 2738 (1965).
 (7) C. Hansch, A. R. Steward, and J. Iwasa, Mol. Pharmacol., 1, 87 (1965).
 (8) C. Hansch and A. R. Steward, J. Med. Chem., 7, 691 (1904).

[^3]: (9) C. Hansch, A. R. Steward, J. Iwasa, and E. W. Deutsch, Mol. Pharmacol., 1, 205 (1965).
 (10) C. Hansch and E. W. Deutsch, Biochim. Biophys. Acta, 112, 381 (1966).

[^4]: (11) The comsand terne of en 11 has mo onmerparl in ef 3 , since the parem compondes thological acminy was cumpensated for in the expression of holonical activity chosen for the molel.

[^5]: 19(6),

